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Abstract

We consider a game in which Bitcoin miners compete for a reward

of each solved puzzle in a sequence of them. We model it as a sequen-

tial game with imperfect information, in which miners have to choose

whether or not to report their success. We show that the game has a

multiplicity of equilibria and we analyze the parameter constellations

for each of them. In particular, the minimum requirement to find it

optimal not to report is decreasing with the number of miners who are

not reporting, and increasing the heterogeneity among players reduces

the likelihood that they choose not to report.

Keywords: Bitcoin, mining game, proof-of-work, sequential game, im-

perfect information.

JEL:

1 Introduction

In recent years, various cryptocurrencies have been developed and introduced
in the market.1 While these currencies are increasingly gaining users, they
are also starting to gain attention from governments, financial institutions,
banks, and academics, among others.

In this paper we study one particular aspect of one of these decentralized
cryptocurrencies, Bitcoin, from a game theoretical point of view.2,3 Briefly
speaking, in Bitcoin there is a sequence of proof-of-work puzzles that are
used to order transactions (we give technical details in the next subsection).
The prize for being the first in solving each of those puzzles is new bitcoins.
Puzzles have the following properties: (i) finding a solution is not observable,
(ii) the player who finds the solution does not get his prize unless he reports
it, and (iii) a player cannot solve a puzzle unless he knows the solution of
the previous one. Therefore, a player who solves a puzzle faces the trade
off between reporting it and getting the prize, or starting the next puzzle
secretly. In this latter case, he takes the risk that one of his rivals solves
the previous puzzle, in which case there are now two competing solutions

1A cryptocurrency is a currency issued electronically which relies on cryptographic
primitives for the security of its transactions.

2Nowadays, Bitcoin is the most important cryptocurrency in terms of transaction vol-
ume an total value of the circulating currency units.

3We follow the usual convention and we call the whole system Bitcoin and its unit of
account bitcoin.

1



(a “fork”). However, only one of them can be considered a valid solution.
Players have to decide on top of which of both solutions to solve the next
puzzle and the one which finishes it first determines which of the previous
solutions were valid. We study under which conditions a player has incentives
to not report the solution as soon as he solves a puzzle.

This question is important for the stability of proof-of-work systems like
Bitcoin because they critically depend on the publicity of solved puzzles.
Previous papers have studied those incentives under a different approach to
ours. For instance, Eyal & Sirer (2014) show that, under certain conditions, it
is profitable for a player to follow a strategy named “selfish mining” if all the
remaining players report as soon as they solve a puzzle. Additionally, Nayak,
Kumar, Miller & Shi (2016) prove that selfish mining is not (in general) an
optimal strategy. Indeed, they propose a different strategy (named “stubborn
mining”) which improves the player’s payoff even more. In both cases, they
specify a particular and very sophisticated strategy, comparing its payoff
with the one under instantaneous reporting. Moreover, these strategies are
defined assuming that all remaining players do not behave strategically and
report as soon as they succeed.

In contrast, our model considers a sequential game with imperfect infor-
mation. Players, after solving a puzzle, have to choose between two simple
actions: report or not report. Thus, when a player finds a solution, he is
uncertain whether he was the first one, or one or more of his rivals have
already finished without reporting.

We start the analysis showing, by mean of an example, that our model
(even though we do not propose any sophisticated strategy) gives similar
results (in spirit) to Eyal & Sirer (2014) and Nayak et al. (2016); it is not
necessary for a player to have a probability of success larger than 50% to find
it optimal not to report it. Next, we show that there are a multiplicity of
equilibria and we state conditions under which these equilibria exist. Finally,
we show that the minimum requirement to find it optimal not to report is
decreasing in the number of rivals not reporting, and that increasing the
heterogeneity among players may be a useful tool to reduce the likelihood
that they choose not to report.

Next, we give a technical introduction of how Bitcoin works. Section 2
provides the model. Section 3 analyzes it and provides the main results.
Section 4 concludes.

1.1 A Brief Introduction to How Bitcoin Works

Bitcoin is a decentralized consensus mechanism and a global currency sys-
tem. Böhme, Christin, Edelman & Moore (2015) provide an overview of the
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technology, economics and governance of Bitcoin. Technically, Bitcoin is a
distributed system running on a homogeneous peer-to-peer network. Peers in
the network collectively maintain a global state, the ledger. The data which
are tracked by the network are the so-called outputs, i.e. tuples consisting of
a value denominated in bitcoins and an output script. The output script sets
up a condition that has to be satisfied in order to claim the bitcoins associ-
ated with the output. The most common case is that a signature matching an
address is required. A transaction claims one or more previously unclaimed
outputs and creates new outputs. By providing inputs matching the output
script, the creator of the transaction proves that she is allowed to claim the
output. A transaction redistributes the sum of values to new outputs and
may set up arbitrary claiming conditions for them.

In order to apply a transaction to the replicas of the ledger, the trans-
action is flooded in the network. When a node in the network receives a
transaction, it first verifies the signatures of the transaction and, if valid,
the transaction input from the claiming transaction. If all scripts return
true, the outputs were not claimed by a previous transaction, and the sum
of new output values is smaller than or equal to the sum of claimed output
values, the transaction is valid. Due to the distributed nature of the system,
the order in which transactions are applied is not identical across peers, and
peers may disagree about the validity of a transaction, (e.g., if two or more
transactions attempt to claim the same output, the validity depends on the
order they are seen by the peers.) Bitcoin eventually resolves inconsistencies
by choosing one peer as leader, which imposes his changes to other peers by
sending them a “block” containing all transactions it accepted since the last
block. Each block contains a reference to its predecessor. Hence the ledger is
a chain of blocks (the “Blockchain”) with a shared history of all transactions
that were applied in the past. Transactions that are included in a block of
the blockchain are said to be confirmed (see Decker & Wattenhofer (2013)).

To determine which node is the leader and may impose its view on the
others, the nodes attempt to find a solution to a proof-of-work puzzle with a
given probability of success (see Dwork & Naor (1992)). The proof-of-work
consists in finding a byte string, that combined with other data (including
a hash based on all of the transactions in the block) results in a hash with
a given number of leading zero bits. The number of leading zero bits is
determined via consensus by all nodes and regularly adjusted to achieve
an average of one result every 10 minutes in the entire network. Nodes
attempting to find a solution to the proof-of-work are called miners. To
incentivize miners, the node finding a block receives a reward in the form of
new bitcoins, i.e. it may include a transaction in the block that has no inputs
but specifies outputs for a predetermined number of coins. The first 210’000
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blocks received a reward of 50 bitcoins. This reward is periodically cut in
half. After 21 million bitcoins have been mined, the reward reaches zero and
no further bitcoins will be created. Hence, the protocol design for Bitcoin
provides for a controlled expansion of the currency and an ultimate limit
to the number of bitcoins issued. Miners have a second potential source of
revenue (which will become the only source of revenue once all bitcoins have
been created): when submitting a transaction, the user can offer to pay a
transaction fee, which is a payment to whatever miner solves the puzzle that
verifies the transaction. If space in blocks is scarce, users have an incentive
to offer a transaction fee in order to have their transactions included in a
block (see Jaag & Haller (2017)).

2 The Model

Suppose that three players i ∈ {1, 2, 3} are mining for a new block at the tip
of the same blockchain (i.e., we assume that there are no forks at the starting
point).

To mine a block, they compete for being the first to solve the proof-of-
work puzzle. Thus, for each block there is a puzzle τ to be solved. Although
all puzzles are different, we assume that the difficulty of all puzzles is the
same.4 At the beginning of the game, the first puzzle is known by all miners.
However, the next puzzle depends on the solution of the previous puzzle.
This is, the second puzzle cannot be solved until a miner solves first the
previous puzzle and publishes its solution. Each puzzle has more than one
valid solution. Thus, if two solutions for the same puzzle are published, there
will be two subsequent puzzles (a fork) and miners have to choose between
them. In such a case, we will say that there are two branches or tips, each
one denoted by its corresponding miner (e.g., i-tip).

The prize for solving each puzzle is modelled to be constant through
time and it is normalized to v = 1. To find the solution for each puzzle,
miners spend all their hashing (or computational) power hi available which
is common knowledge. We make the normalization that

∑
i hi = 1 and

normalize the cost of using it to zero. The expected payoff for solving the
puzzle τ is E(πi,τ ) = γi,τ (h)v, where h = (h1, ..., hn), and γi,τ (h) is the
probability of being the first in finding a valid solution for τ . Miners are
assumed to not discount the future.

Finding the solution of a puzzle is a random process which follows a

4Actually, the difficulty of puzzles in Bitcoin is proportional to the total effort used for
solving them. For simplicity, we abstract from this issue.
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Poisson distribution with parameter λi(hi), where λ′ > 0 and λ′′ = 0.5 Thus,
the time between two events follows an exponential distribution and the
probability of being the first contestant to find the solution is given by

γi,τ (h) = Pr(i | ti,τ = min{t1,τ , ..., tn,τ}) =
λi(hi)∑n
j=1 λj(hj)

= hi = γi(hi).

The game is a sequential game with imperfect information. The first
decision is made by chance or nature (N): which miner is the winner of
the first contest. Next, based on the history of events, the winner has to
decide which action to take: i) to “report” (denoted by R), or ii) to “not
report” (denoted by NR) and starting the next puzzle secretly. However, he
is uncertain whether he is the first one to finish this puzzle a or some of his
rivals have already finished it without reporting it.

In Bitcoin, the sequence of proof-of-work puzzles is infinite. If all miners
were following the selfish mining strategy proposed by Eyal & Sirer (2014),
there would never a report. Hence, every miner would achieve zero expected
profits, giving incentives to deviate from this strategy. In other words, they
should follow a stopping rule. To avoid this complication, we assume that
from the second puzzle on every miner reports. Therefore, we just need to
analyze a two stage game. From that point forward, the game will be as in
the starting point.

To exemplify, let’s assume, without loss of generality, the player 1’s per-
spective. Suppose that miner 1 has finished the first puzzle. He believes
with probability µ1(h1 | I1) (from now on µ1(h1)) that he was the first one
in doing it. If 1 chooses R, he immediately collects the reward for the first
puzzle.6 In this case, all miners start the next puzzle simultaneously and,
since it is the last puzzle, its winner announces his victory as soon as he finds
the solution and gets the corresponding prize.

5In the Bitcoin framework, the Poisson distribution has a parameter λi = hi/(2
32Dτ )

where Dτ is the difficulty of the puzzle. See Rosenfeld (2011) for more details on the
“Bitcoin” Poisson distribution.

6It is assumed that the lapse of time between solving a puzzle and deciding whether to
report it or not is zero.
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Figure 1: The graphs are a discrete time representation of a continuous time
game. Subgame if miner 1 believes he is the first one to finish the first puzzle and
decides to take action R.

Alternatively, 1 does not report his success on the first puzzle and starts
working on the next one in secret. If 1 is the first to finish the last puzzle,
which occurs with probability h1, he is rewarded with both prizes. However,
it may be the case that one of his rivals finishes the first puzzle before 1
finishes the last one. Indeed, with probability h2 (alternatively h3), 2 (3)
finishes the first puzzle and has to choose his action.7 In case that this rival
chooses R, 1 immediately publishes his solution too.8 Since there are two
known solutions to the first puzzle, the remaining miner has to choose on top
of which solution to solve the next puzzle. We consider that with probability
α the remaining miner chooses the ”first” solution,i.e., the 1 solution in this
case.9 Now, the reward of the first puzzle is allocated depending on the
winner of the last one. If 1 is the first in finishing the latter, he is rewarded
with both prizes. If it is solved by one of the miners mining in top of the
1-tip, he gets the reward of the last puzzle and 1 gets the prize of the first
block. If the rival who has finished the first puzzle, or one of the miners with
him, succeeds in finishing the last one, 1 does not get anything. In case that
2 (3) chooses NR, he and 1 are both mining the last block secretly, each one

7This rival is ignorant about whether it has already been finished because 1 did not
report his solution.

8Notice that, by the nature of the random process, the hashing power already spent by
1 on solving the last puzzle does not increase his probability of winning it.

9In practice, the remaining miner chooses the solution he observes first. In our model,
both reports occurs at the same time and, hence, the remaining miner has no way of
knowing which was the first solution. However, to simplify and to have some symmetry
for every miner we have adopted the rule that with probability α the remaining miner
observes first the ”first” solution.
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on top of his own previous solution. If one of them solves the last puzzle, this
miner will get both prizes. If the last miner finishes the first puzzle before,
he will have to choose his action.
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h3
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Figure 2: Subgame if miner 1 believes he is the first one to finish the first puzzle
and he decides to take action NR.

Miner 1 believes with probability µ1(h2, h1 | I1) (from now on µ1(h2))
that miner 2 (alternatively µ1(h3) and miner 3) has already finished the first
puzzle without reporting it.10 Based on the assumption that his beliefs are
correct, if 1 chooses R, 2 (3) will also report immediately and both prizes
are defined by the winner of the next puzzle. If he also chooses NR, there
are two possible outcomes: (i) one of the two miners who are mining the last
puzzle secretly finishes and the winner gets both rewards; (ii) miner 3 (2)
finishes the first puzzle before than one of his rivals finishes the last one and
decides his action.

Finally, miner 1 believes with probability µ1(h2, h3, h1 | I1) (from now on
µ1(h2, h3)) that he is the last miner in finishing the first puzzle: 2 (alterna-
tively 3) was the first one and 3 (alternatively 2) the second one. Now, no

10Note that µ1(h2) refers to a joint event: solving and deciding not to report. If 2
reports, miner 1 would be sure in which node he is.
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matter which action is taken by 1, he will get both prizes with probability
h1 and nothing otherwise.
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Figure 3: Above: Subgames if miner 1 believes he is the second one (after miner
2) to finish the first puzzle, and if he is the last one (2 was the first and 3 the
second). Below: Subgames if miner 1 believes he is the second one (after miner
3) to finish the first puzzle, and if he is the last one (3 was the first and 2 the
second).
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Formally, we study the sequential equilibrium of the game.11 A sequen-
tial equilibrium is an “assessment” (a pair of players’ behavioral strategies
and their beliefs for every information set) that is sequentially rational and
consistent for every player. A sequentially rational behavioral strategy βi
for miner i specifies a probability distribution over player i’s set of actions
{R,NR} (conditional of succeeding in the first puzzle, i.e., the i information
set) which is a best response to the other players’ strategies given i’s beliefs.
Conditional on succeedinf, the miner i’s beliefs

µi ≡ (µi(hi), µi(hj), µi(hk), µi(hj, hk), µi(hk, hi)), (1)

are derived from the strategies using Bayes’ rule.
The expected payoffs for each miner are the following:

EU1(R) = 2h1 + µ1(h1)(1− h1) + µ1(h2)(1− α)h3 + µ1(h3)(1− α)h2,

EU2(R) = 2h2 + µ2(h2)(1− h2) + µ2(h1)(1− α)h3 + µ2(h3)(1− α)h1, (2)

EU3(R) = 2h3 + µ3(h3)(1− h3) + µ3(h1)(1− α)h2 + µ3(h2)(1− α)h1,

for action R, and

EU1(NR) = 2h1 + µ1(h1)[2h1h2 + αh2(1− β2)h3 + 2h1h2β2h3]

+ µ1(h1)[2h1h3 + αh3(1− β3)h2 + 2h1h3β3h2]+

+ µ1(h2)[2h1h3] + µ1(h3)[2h1h2],

EU2(NR) = 2h2 + µ2(h2)[2h1h2 + αh1(1− β1)h3 + 2h2h1β1h3]

+ µ2(h2)[2h2h3 + αh3(1− β3)h1 + 2h2h3β3h1}] (3)

+ µ2(h1)[2h2h3] + µ2(h3)[2h2h1],

EU3(NR) = 2h3 + µ3(h3)[2h3h1 + αh1(1− β1)h2 + 2h3h1β1h2]

+ µ3(h3)[2h3h2 + αh2(1− β2)h1 + 2h3h2β2h1}]
+ µ3(h2)[2h3h1] + µ3(h1)[2h3h2],

for action NR. Because we are not considering randomizations, from now on
we assume that if any miner achieves the same profits under both actions,
he will choose to follow action NR. Therefore, given µi, he will play βi = 1
whenever EUi(NR) ≥ EUi(R), and βi = 0 otherwise.

11See Osborne & Rubinstein (1994).
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3 Analysis

Previous works, like Eyal & Sirer (2014) and Nayak et al. (2016), have shown
that it is not necessary for a miner to have a hashing power larger than 50% of
the total hashing power to find it optimal not to report. Although they show
this by proposing different sophisticated strategies, a key is the assumption
that, when there is a fork, a proportion of the remaining miners chooses the
tip of the non-reporting miner. This feature is also captured in our setting
through the parameter α.

To illustrate the importance of this parameter for that result, in the
following example we show that it still holds in our simpler setting.

Example 1. Suppose that the miner i has to decide whether to report or
not, knowing that his rivals always report. Suppose that hj = hk = 1/3
and α = 1. From equations (2) and (3), miner i does not report if hi ≥
1/2−αhjhk/(hj +hk). Therefore, it is enough for miner i to have a hashing
power hi = 1/3.

The intuition is the following. Since i has already finished the first puzzle,
he can take the risk of starting the next one secretly because in case that
a rival solves and publishes the former before i finishes the latter, i will
also report the first puzzle, creating a fork. Recall that, in that case, the
allocation of the reward of the first puzzle is defined in the last puzzle and
its probability of being finished on the i-tip depends on α. Hence, the larger
the fraction α, the larger i’s expected payoff if he is forced to report, and
the lower hi under which i finds it optimal to choose NR. Note that, if none
of the remaining miners decides to mine on top of the non-reporting miner’s
solution (i.e., α = 0), i will need at least half of the hashing power to find it
optimal to take action NR.

The result in the previous example depends on the distribution of the
hashing power and the value of the parameter α. In our model with three
miners and two periods, an extreme case is one of the rivals’ hashing power
being close to zero. The opposite extreme is hj = h for all j 6= i.

Remark 1. Depending on the distribution of the hashing power and on the
parameter α, the minimum hashing power required for miner i to find it
optimal to choose NR if both rivals are choosing R belongs to the range[
1
3
, 1
2

)
.

Proof: See the Appendix.
However, in the aforementioned works and in our analysis above, it is

assumed that all miners (but the one under analysis) might not be rational
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and always choose to report. In what follows, we consider that all players
are rational and behave strategically.

Since every miner is uncertain about the history of past events, they form
beliefs about them following Bayes’ rule:

µi(hi) =
1

1 + hjβj + 2hjβjhkβk + hkβk
,

µi(hj) =
hjβj

1 + hjβj + 2hjβjhkβk + hkβk
, for all j 6= i, (4)

µi(hj, hk) = µi(hk, hj) =
hjβjhkβk

1 + hjβj + 2hjβjhkβk + hkβk
.

Using previous beliefs, and equations (2) and (3) we get the minimum
hashing power under which βi = 1 is sequentially rational for every miner.
In particular, miner i chooses NR with probability βi = 1 if and only if:

hi ≥
1

2
− α hjhk

hj + hk
− hjhk[3− 4(hj + hk)]

2(hj + hk)
(βj + βk), (5)

and chooses R if his hashing power is lower than the right-hand side of the
equation.

The following proposition states that the game has a multiplicity of assess-
ments which are a sequential equilibrium. It specifies under which parameters
the different equilibria exist.

Proposition 1. There is a multiplicity of sequential equilibria which depends
on the parameters. In particular, there exists sets of hashing powers such that
in equilibrium,

• all players do not report: only if α ≥ 2/3.

• one player reports: for any α ∈ (0, 1) if the hashing power of the re-
porter is lower than 1/4 or in the range (

√
2/4, 3/5). For a hashing

power in the range (1/4,
√

2/4) there is 0 < α < α < 1 such that the
equilibrium exists for any α ∈ (α, α).

• only one player does not report: for any α ∈ (0, 1) if the hashing power
of the non-reporting miner is larger or equal than 1/2. If this hash-
ing power is in the range (1/4, 1/2), there is α ∈ (0, 1) such that the
equilibrium exists for any α > α.

• all players report: for any α ∈ (0, 1).
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Proof: See the Appendix.
From equation (5) we can find additional results which we record in sev-

eral lemmata. Since all of these results are straightforward from equation
(5), the proofs are omitted.

The first, and maybe the most interesting and surprising result, is that,
for any player with hashing power larger than 1/4, the minimum hashing
power he requires to find it sequentially rational to not report is decreasing
with the number of rivals who are also not reporting.

Lemma 1. The minimum hashing power required to not report is decreasing
with the number of miners choosing NR. This minimum hashing power is
bounded below by 1/4.

This result is illustrated in the following example.

Example 2. Suppose hj = hk = 1/3 and α = 2/3. Consider the case that
miner i has solved the first puzzle and he has to decide which action to take. If
βj = βk = 0, miner i needs at least a hashing power of 7/18 to find it optimal
to not report his new block. If only βj = 0 (or, alternatively, βk = 0), miner
i needs a hashing power 153/432 to not report. Finally, if βj = βk = 1, it is
enough for miner i to have hi = 1/3.

Second, if the heterogeneity among miners increases, the hashing power
requirements for βi = 1 also increases, making it less likely to find a sequen-
tially rational assessment in which some miners play that strategy.

Lemma 2. Given α, an increment in the heterogeneity among miners reduces
the likelihood that an assessment in which more than one miner choose action
NR can be a sequential equilibrium.

However, in our three miners model, there will be always one miner choos-
ing NR as it is shown in the following example.

Example 3. Suppose α = 2/3 and hi = hj = hk = 1/3. Hence, all miners
find it optimal to choose NR. On the other hand, suppose hi = 1/3, hj = 2/3
and hk = 0. In this case, miners i and k choose R while miner j chooses
NR.

4 Conclusion and Discussion

In this paper we study whether proof-of-work consensus mechanisms (like the
one in Bitcoin) induce an “honest” behavior (i.e., to report a new block as
soon as it is mined). In contrast to previous literature, we propose a model
in which all players are rational.
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We find that not reporting is an optimal strategy under certain condi-
tions. For instance, the minimum hashing power required for not reporting
is decreasing in the number of rivals that find it also optimal not to report.
We also show that increasing the heterogeneity among miners is a useful tool
to avoid that some of them find it optimal to not report.

For future research it may be interesting whether these results are robust
to an increment in the number of miners. Additionally, the degree of het-
erogeneity is decided by the market. Miners freely increase or decrease their
hashing power, they join mining pools (i.e. aggregate their hashing power),
etc., depending on the expected profits. It may be also interesting to study
whether there is an economic mechanism to induce miners to keep a certain
degree of heterogeneity among them.

Appendix - Proofs

Proof of Remark 1: Consider that j and k are reporting. Then, miner
i does not report if hi ≥ 1/2 − αhjhk/(hj + hk). In the limit, if hj (or hk)
goes to zero, the left hand side goes to 1/2. The lowest threshold is all
the remaining miners having the same hashing power, i.e., hj = hk.

12 Since
hj + hk = 1 − hi, after some algebraic manipulations, i finds it optimal to
choose NR if and only if

2αh2j ≥ 1− hi − 2hi(1− hi).

Because 2hj = 1− hi if hj = hk, the previous inequality is equivalent to

hi ≥
2− α
4− α, with α ∈ (0, 1).

Thus, if there are three miners, the minimum hashing power needed by i
to find it optimal to take action NR is in the range [1/3, 1/2).

Proof of Proposition 1: We look for the conditions on the hashing power
and on the parameter α that make every possible assessment sequentially
rational. We do this by studying the different strategy profiles one by one.
Since all the information sets are reached under the sequentially rational
strategy profile under the set of beliefs, we just need to use Bayes’ rule to
check consistency.

1- Suppose βi = 1 for every miner. Then, it must be that condition

12To see this, note that we can replace hj + hk by 1 − hi. Next, hjhk has a maximum
if hj = hk for a given hi.
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(5) holds for every miner while h1 + h2 + h3 = 1. After some algebraic
manipulations, those are satisfied only if

α ≥ 1 +
h21 + h22 + h23 − 12h1h2h3
h2h3 + h1h3 + h1h2

.

The previous inequality relaxes (i.e., the right hand side is minimized) if
hi = hj = hk = 1/3, yielding α ≥ 2/3. Any other distribution of the hashing
powers will require a larger α to satisfy (5) for every miner.

The beliefs for every miner i sustaining this equilibrium are given by:

µi(hi) =
1

1 + hj + 2hjhk + hk
,

µi(hj) =
hj

1 + hj + 2hjhk + hk
,

µi(hj, hk) =
hjhk

1 + hj + 2hjhk + hk
.

2- Without lost of generality, let’s consider βi = βj = 1 and βk = 0.
Therefore, condition (5) must be satisfied for miners i and j,

hi ≥
1

2
− α hjhk

hj + hk
+
hjhk[1− 4hi]

2(hj + hk)
,

hj ≥
1

2
− α hihk

hi + hk
+
hihk[1− 4hj]

2(hi + hk)
,

while for miner k,

hk <
1

2
− α hihj

hi + hj
+
hihj[1− 4hk]

(hi + hj)
.

The set of the previous inequalities holds if and only if,

2hi(1− hi) + 2hj(1− hj)− 2hk(1− hk) >
1− (hi + hj) + hk + 2α(hihj − hihk − hjhk) + hk(hi + hj)− 2hihj,

and after some manipulations and using hi + hj = 1− hk, if and only if

h2k − 3hk + 6hihj > 2α(hihj − hk(hi + hj)). (6)

14



Since

h2k − 3hk = hk(hk − 1)− 2hk,

= −hk(hi + hj)− 2hk,

equation (6) can be written as

hihj − hk(hi + hj)− 2hk + 5hihj > 2α(hihj − hk(hi + hj)).

We have two subcases: (i) hihj < hk(hi +hj), and (ii) hihj > hk(hi +hj).
(i) If hihj < hk(hi + hj),

α >
2hk − 5hihj

2(hk(hi + hj)− hihj)
+

1

2
. (7)

In case that the right hand side (rhs) is lower than zero, the inequality is
satisfied by any α ∈ (0, 1). This happens if

2hk − 5hihj
2(hk(hi + hj)− hihj)

+
1

2
< 0 ⇔ hk(3− hk) < 6hihj.

Because hihj < hk(1− hk), we have

hk(3− hk) < 6hihj < 6hk(1− hk),

and is necessary (but not sufficient) to have hk < 3/5.
On the other hand, it must be that

hihj
1− hk

< hk <
1

2
− α hihj

hi + hj
+
hihj[1− 4hk]

(hi + hj)
. (8)

Thus,

hihj(4hk + α)

1− hk
<

1

2
⇔ α <

1− hk
2hihj

− 4hk.

Since, by assumption (1− hk)hk > hihj, it is sufficient to ask,

α <
1

2hk
− 4hk.

The right-hand side is larger than 1 if hk < 1/4. Thus, with any hk < 1/4
there exists α ∈ (0, 1) which satisfies equation (7) and (8).
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(ii) If hihj > hk(hi + hj),

α <
1

2
− 2hk − 5hihj

2(hihj − hk(hi + hj))
. (9)

If the right-hand side is lower than zero, there is no α satisfying the set of
inequalities. This happens if

1

2
− 2hk − 5hihj

2(hihj − hk(hi + hj))
< 0,

⇔ 6hihj < hk(3− hk).

By assumption hk(1 − hk) < hihj, therefore, it must be that 6hk(1 − hk) <
hk(3− hk), which holds if hk > 3/5. Hence, hk < 3/5 in order for a range of
α ∈ (0, 1) to exist satisfying the inequalities.

To have that any α ∈ (0, 1), the right-hand side must be larger or equal
than one. In such a case

− 1

2
>

2hk − 5hihj
2(hihj − hk(hi + hj))

⇔ hk(1 + hk) < 4hihj.

Since hihj > hk(hi + hj), either 4hihj > hk(1 + hk) > 4hk(hi + hj) or
4hihj > 4hk(hi + hj) > hk(1 + hk). The first case is satisfied if hk > 3/5,
yielding to a contradiction. The second case is satisfied for any hk < 3/5. If

hihj
1− hk

<
1

2
− α hihj

hi + hj
+
hihj[1− 4hk]

(hi + hj)
,

then

α <
1− hk
2hihj

− 4hk.

The right-hand side is larger than one if (1−hk)/(2hihj) > 1 + 4hk. Because
by assumption 1/(2hk) > (1− hk)/(2hihj), it is necessary hk < 1/4. Finally,
if

hihj
1− hk

>
1

2
− α hihj

hi + hj
+
hihj[1− 4hk]

(hi + hj)
,

then

α >
1− hk
2hihj

− 4hk.
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If the right-hand side is below 0, then any α ∈ (0, 1) satisfies the requirements
for this equilibrium. This happens if (1 − hk)/(2hihj) < 4hk. Since 1/hk >
(1− hk)/(hihj), it is sufficient to ask

√
2/4 < hk.

The beliefs sustaining this equilibrium are given by:

µi(hi) =
1

1 + hj
, µi(hj) =

hj
1 + hj

, µi(hj, hk) = 0,

µj(hj) =
1

1 + hi
, µj(hi) =

hi
1 + hi

, µj(hi, hk) = 0,

µk(hk) =
1

1 + hj + 2hjhi + hi
, µk(hi) =

hk
1 + hj + 2hjhi + hi

, µk(hj, hi) =
hjhi

1 + hj + 2hjhi + hi
.

3- Suppose that βi = 1 and βj = βk = 0. Now, we need

hi ≥
1

2
− α hjhk

hj + hk
,

hj <
1

2
− α hihk

hi + hk
− hihk[3− 4(hi + hk)]

2(hi + hk)
,

hk <
1

2
− α hjhi

hj + hi
− hjhi[3− 4(hj + hi)]

2(hj + hi)
.

These conditions are satisfied if and only if

α


>

(1−hi)(1−3hi)−(1−hj)(1−2hj)−(1−hk)(1−2hk)+8hihjhk
2(hjhk−hihk−hihj)

if hi <
hjhk
hj+hk

,

<
(1−hi)(1−3hi)−(1−hj)(1−2hj)−(1−hk)(1−2hk)+8hihjhk

2(hjhk−hihk−hihj)
if hi >

hjhk
hj+hk

,

indeterminate if hi =
hjhk
hj+hk

.

Take the first case. It must be that

hjhk
hj + hk

> hi ≥
1

2
− α hjhk

hj + hk
,

which is satisfied if and only if

α >
hj + hk
2hjhk

− 1.

If the right-hand side is lower than zero, any α ∈ (0, 1) sustains the
equilibrium. This is,

hj + hk
2hjhk

− 1 < 0 ⇔ hj + hk
hjhk

< 2.
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Since (hj + hk)/(hjhk) < 1/hi by assumption, if 1/hi < 2 (or 1/2 > hi) then
(hj + hk)/(hjhk) < 2. If 1/2 > hi, there is a right-hand side larger than zero
and α must be larger than it to sustain the equilibrium.

In the extreme case, if the right-hand side is larger than one, there is not
α ∈ (0, 1) sustaining all the inequalities. Therefore,

hj + hk
2hjhk

− 1 < 1 ⇔ hj + hk
hjhk

< 4.

Since (hj + hk)/(hjhk) < 1/hi by assumption, if 1/hi < 4 (or hi > 1/4) then
(hj + hk)/(hjhk) < 4. Thus, for any hi > 1/4, there is α < 1 such that the
three inequalities hold for any α > α.

Consider hi > hjhk/(hj + hk), and let’s check if

(1− hi)(1− 3hi)− (1− hj)(1− 2hj)− (1− hk)(1− 2hk) + 8hihjhk
2(hjhk − hihk − hihj)

∈ (0, 1).(10)

Since hi > hjhk/(hj + hk), the denominator is lower than zero. As a con-
sequence, to have the right-hand side larger than zero, it must be that the
numerator is also lower than zero. This is, after some operations,

h2i − 3hi + 4hjhk(1 + 2hi) < 0,

for all hi(1− hi) > hjhk. Hence,

hi(hi − 3) + 4hi(1− hi)(1 + 2hi) < 0 ⇔ −8h2i + 5hi + 1 < 0,

which holds for all hi > 5/16 +
√

57/16.
If the numerator is larger than the denominator,

h2i−3hi+4hjhk(1+2hi) > 2hjhk−2hi(1−hi) ⇔ 2hjhk(1+4hi) > hi(1+hi),

for all hi(1− hi) > hjhk, implying

2hi(1− hi)(1 + 4hi) > hi(1 + hi) ⇔ −8h2 + 5hi + 1 > 0,

yielding a contradiction.
Therefore, the numerator of equation (10) must be lower than the denom-

inator with hi > 5/16 +
√

57/16 > 1/2 and, as consequence, any α ∈ (0, 1)
sustains the equilibrium.
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The set of beliefs sustaining this equilibrium is:

µi(hi) = 1, µi(hj) = 0, µi(hj, hk) = 0,

µj(hj) =
1

1 + hi
, µj(hi) =

hi
1 + hi

, µj(hi, hk) = 0,

µk(hk) =
1

1 + hi
, µk(hi) =

hi
1 + hi

, µk(hi, hj) = 0.

4- Suppose that βi = 0 for every i. Hence, for every miner i,

hi <
1

2
− α hjhk

hj + hk
. (11)

After some manipulations, all conditions on the hashing powers are satisfied
if and only if

α <
h2i + h2j + h2k

hjhk + hihk + hihj
.

The previous inequality becomes more strict if miners are homogeneous (i.e.,
hi = 1/3 for every i), requiring α ≤ 1. Therefore, any α ∈ [0, 1) satisfies (11)
for all miners and for any distribution of the hashing powers.

The beliefs for every miner i sustaining this equilibrium are given by:

µi(hi) = 1, µi(hj) = 0, µi(hj, hk) = 0.
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